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Abstract

We review the techniques and tools used for regression testing, the primary
quality assurance measure, in a multi-site research project working towards
a high-quality Norwegian – English MT demonstrator. A combination of
hand-constructed test suites, domain-specific corpora, specialized software
tools, and somewhat rigid release procedures is used for semi-automated
diagnostic and regression evaluation. Based on project-internal experience
so far, we comment on a range of methodological aspects and desiderata for
systematic evaluation in MT development and show analogies to evaluation
work in other NLP tasks.

1 Background

The Norwegian national initiative LOGON

(Oepen et al., 2004) is a four-year re-
search project aiming to deliver a high-
quality, domain-adapted MT system for
written texts. The project involves research
groups at the Universities of Oslo, Bergen,
and Trondheim and targets the domain
of tourism-related information—specifically
the translation of Norwegian instructional
documents on back-country activities into
English.1 To investigate the portability of
the general approach and re-usability of in-
dividual components, a Japanese –English
instantiation of the system serves as a sec-
ondary test-bed, but is far less developed
than the Norwegian –English main branch.

Emphasizing translation quality more
than breadth of system coverage, the con-
sortium has adapted a relatively conven-
tional approach, viz. semantic transfer of
logical-form meaning representations ob-

1See the public project web pages at
‘http://www.emmtee.net’ for additional infor-
mation, including research groups and people
involved, a project bibliography, and pointers to
on-line publications.

tained from a broad-coverage parser of Nor-
wegian and subsequent grammar-based gen-
eration from target language semantics. On
top of this symbolic backbone, LOGON in-
corporates stochastic components at all pro-
cessing levels, primarily to rank and se-
lect among competing hypotheses and, to
a lesser degree, increase end-to-end robust-
ness. Given significant progress in compu-
tational linguistics in the past two decades,
a central goal of the LOGON initiative is to
evaluate state-of-the-art grammatical frame-
works and processing schemes as to the con-
tribution they can make to a high-quality
end-to-end MT system.

The specific meaning representation lan-
guage used in LOGON is Minimal Recur-
sion Semantics (MRS; Copestake, Flickinger,
Sag, & Pollard, 2003), a family member of
the class of flat, underspecified semantics
that have been popular in computational
semantics since the early 1990s. Syntac-
tic analysis of Norwegian is based on an
existing Lexical-Functional Grammar (lfg)
implementation, NorGram (Dyvik, 1999),
under development on the Xerox Linguis-
tic Environment (xle) since around 1999.
The grammar has a lexicon comprising some
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Figure 1: Schematic LOGON system architecture: the three core processing components are managed
by a central controller that passes intermediate results (MRSs) through the translation pipeline. The
Parallel Virtual Machine (pvm) layer facilitates distribution, parallelization, failure detection, and
roll-over, and also provides the API to the profiling tools.

80,000 lemmas and, for use in LOGON, is
substantially extended and augmented with
an MRS module, deriving semantic rep-
resentations suitable as input to transfer.
English realization, in turn, employs the
LinGO English Resource Grammar (erg;
Flickinger, 2000), a computational resource
grammar in the Head-Driven Phrase Struc-
ture Grammar (hpsg) paradigm, and parts
of the delph-in open-source processing
suite (Copestake, 2002; Carroll, Copestake,
Flickinger, & Poznanski, 1999). Figure 1
shows a block diagram of the main com-
ponents and flow of control; we will dis-
cuss the make-up of the LOGON controller
and profiling modules and use of the Par-
allel Virtual Machine (pvm) further in Sec-
tion 2 below. For the purpose of the present
discussion, nothing much will depend on
the specific linguistic or engineering details
of these components. Let it suffice that
the system-internal diversity of grammatical
frameworks and externally-supplied pieces
of software (each with several dozens of con-
figuration options) greatly contribute to the
inherent complexity of the LOGON demon-
strator and, thus, the project-internal need
for precise and largely automated quality as-
surance.

2 Competence and Perfor-

mance Profiling for MT

While software configuration and release
management, quality assurance, regression
testing, et al. are standard fare even in
small-ish commercial (software) develop-
ment efforts, this is true to a lesser degree
in academic engineering. In the following
we will argue—by means of reflection on LO-

GON experience to date, assertion of conclu-
sions to be drawn, and a series of example
diagnostics—that a technology-oriented re-
search initiative of any size not only must
implement basic quality assurance measures,
but potentially can gain a lot from orga-
nizing all development around a scalable,
uniform, precise, and automated evaluation
regime. LOGON has some eight active de-
velopers at three sites contributing to the
source code repository of its core demon-
strator and (as of January 2005) around
650 megabytes (or 11,000 files) of soft-
ware (430,000 lines of code in six program-
ming languages) and linguistic resources
(some 488,000 lines of source) in version
control, including seven third-party compo-
nents. The project aims to complete at
least three integration cycles per calendar
year, i.e. test and release to other consor-
tium members and outside partners new sys-
tem revisions in each spring, fall, and winter.
Within these integration cycles, major com-



ponents (software and grammars alike) on
average undergo revision every other week,
closer to an integration deadline often once
per day. Each component has an appointed
maintainer, i.e. a developer who has primary
responsibility for the well-functioning of the
module both in isolation and as part of the
demonstrator at the time of module submis-
sion. Component maintainers use a suite of
automated regression tools to assess the ef-
fects of new revisions prior to submission.
Holistic regression testing, in our universe, is
a methodology of tracking system evolution
in painstaking detail—specifically aiming at
the automated and immediate identification
of (potentially) detrimental changes.

Oepen & Flickinger (1998) and Oepen &
Callmeier (2004) have proposed a technique
dubbed competence and performance pro-
filing (in analogy to profiling in software
engineering) for the development of com-
putational grammars and parsers. Profil-
ing in their sense characterizes a strongly
empiricist approach that makes frequent
and detailed measurements of grammar and
system behavior—in combination with in-
depth analysis and automated comparison
to earlier versions—a focal point in the en-
gineering cycle. Thus, profiling could be
viewed as glass box evaluation at the high-
est possible level. In a nutshell, the LO-

GON quality assurance approach to guiding
developers in revising and integrating parts
of the MT demonstrator is a generalization
of the competence and performance profil-
ing methodology and tools. A profile is a
record of a large number of indicators of
linguistic ‘competence’ and system ‘perfor-
mance’ obtained from a batch run on some
data set, i.e. a test suite or development cor-
pus. For each input in the batch, the pro-
file records measures like the number of can-
didate analyses, associated linguistic repre-
sentations and probability scores for each of
them, central parameters of resource con-
sumption (use of cpu time vs. real time,
memory use, et al.) and processing search
space explored, and many more. Linguis-
tic representations can comprise derivation
trees, feature structures, semantic formu-
lae, and others, while processing metrics
may include counts of chart edges in pars-

ing or generation, successful vs. failed uni-
fications, copy operations, effectiveness of
ambiguity factoring, and others. All data
is recorded in a database, such that over
time a detailed history of evolution is ac-
cumulated. At the same time, the database
enables subsequent inspection (using a spe-
cialized tool) of individual profiles, further
automated testing, and comparison to pre-
vious revisions, i.e. older profiles. In LOGON,
profiling is regularly applied to each of the
three major components—analysis, transfer,
generation—in isolation, as well as to the
end-to-end MT system as a whole.

The open-source [incr tsdb()] tool2 pro-
vides a powerful, yet relatively easy-to-use
interface to the profiling and analysis facil-
ities, such that component maintainers in
LOGON are able to perform their own diag-
nostic and regression evaluation at the same
level of precision as is used by the coordi-
nator in final integration testing. See Sec-
tion 3 below for a few examples of stan-
dard regression tests and diagnostic routines
applied in LOGON. For use in the MT sce-
nario, the [incr tsdb()] profiler (which was
originally developed for parsing with delph-

in hpsg implementations and specifically
the LinGO erg) has been interfaced to the
xle parsing system for lfg, and adapted
for use with the LOGON transfer component
and generator. While test inputs for the
parser are plain strings, typically each an in-
dividual root-level utterance, the latter two
components take a complete profile as their
input—essentially using the MRS meaning
representations produced by an earlier pro-
cessing stage in the pipeline (analysis or
transfer, respectively) as their inputs. The
extended [incr tsdb()] database schema com-
prises some 175 fields in 18 relations, in con-
trast to the 48 fields in the original tsnlp

data model (Oepen, Netter, & Klein, 1997).

Another benefit of the use of [incr tsdb()]
in LOGON is its built-in support for dis-
tributed and parallel computation using the
Parallel Virtual Machine (pvm; Geist, Be-
quelin, Dongarra, Manchek, & Sunderam,

2See ‘http://www.delph-in.net/itsdb/’ for on-
line access to the software, sample data sets for
six languages, rudimentary documentation, and pro-
nunciation guidelines (‘tee ess dee bee plus plus’).



1994) protocol for inter-process communica-
tion across (standard) networked worksta-
tions. Using a mini-HPC cluster of four
dual-Xeon Linux nodes, batch processing of
the main development corpus for LOGON

can be accomplished in a matter of min-
utes, while a strictly sequential batch on a
single cpu would take time on the order of
an extended lunch break. Given internal
complexity of each of the components and
multiple dimensions of possible interactions,
the ability to obtain an up-to-date system
snapshot, empirically assessing the impact
of most recent changes, is an important ele-
ment in our highly data-driven approach to
system engineering. Furthermore, the LO-

GON controller itself—brokering intermedi-
ate results within the translation pipeline—
utilizes the [incr tsdb()] API in communi-
cation with individual modules, such that
component-level profiling and end-to-end
evaluation are merely nested instances of the
same protocol. Thus, workload distribution,
parallelization, failure detection, and roll-
over are all capabilities that can be employed
at either level.

3 Test Suites, Development

Corpora, and Testing

Routines

For the first year and a half or so of the
project life-cycle, engineering in LOGON has
revolved largely around foundational as-
pects of building an end-to-end translation
system, establishing interfaces and agree-
ment on the use of the MRS meaning repre-
sentation language. These included the de-
sign and implementation of its MRS-based
transfer engine (Oepen et al., 2004) and de-
sign or consolidation of semantic analyses in
the source and target language grammars.
Accordingly, controlled, hand-constructed
test suites have played a central role in orga-
nizing development so far. Among the key
advantages of hand-constructed test items
are (a) the ability to provide systematic, of-
ten exhaustive coverage of select phenom-
ena (including infrequent ones), where (b)
each phenomenon can be presented in iso-
lation or controlled interaction with other

phenomena, (c) irrelevant variation and am-
biguity (‘noise’ from a diagnostic evaluation
point of view) can be avoided, and (d) vo-
cabulary size remains limited to a minimum
breadth (Flickinger, Nerbonne, Sag, & Wa-
sow, 1987). Test suites typically include
some degree of linguistic and extra-linguistic
annotation. In the case of LOGON, these
consist primarily of an internal break-down
by linguistic phenomena and the determi-
nation of the intended or preferred read-
ing(s) per test item, as with grammars of
relatively broad coverage some ambiguities
are inevitable. The latter annotation, in
turn, is part of our regular treebanking (or
MRS banking) of LOGON test suites and do-
main corpora (in the spirit of the LinGO
Redwoods approach; Oepen et al., 2002).
It is not only needed to maintain training
material for stochastic processes (like parse
and realization ranking), but at the same
time makes regression testing a lot more con-
cise. A general ability to track all changes
in system outputs or intermediate analyses
is very useful already, but the added infor-
mation about which hypotheses are actually
in-focus clearly facilitates more targeted di-
agnostics.

The two main test suites used so far
exemplify aspects of semantic composition
(e.g. variation in complementation and link-
ing, modification, quantification, scopal re-
lations, et al.) and various types of closed-
class items (determiners, pronouns, conjunc-
tions, et al.) as basic syntactic and semantic
building blocks. The first of these, dubbed
‘mrs’, is an adaptation of the existing LinGO
MRS test suite to Norwegian, where the
overall goal was to preserve semantic phe-
nomena (where they are applicable to Nor-
wegian) rather than produce direct transla-
tions; thus, the resulting 120 or so test items
were then back-translated into English. Our
closed-class test suite is called ‘base’ and, at
this point, has close to 300 items reflecting
some 15 top-level phenomena (of which most
are further sub-divided, for a total of 66 phe-
nomena). Hand-constructed test data was
complemented by a 110-item development
sample of actual tourism text, where utter-
ances were selected in order to present a bal-
anced representation of phenomena typical



LOGON Coverage Profiles (Release 0.2 of December 1, 2004)

total word analysis transfer generation distinct overall
Phenomenon items string results results results outputs coverage

] φ φ φ φ ] %

Conjunctions 29 5.2 1.3 1.1 2.0 1.8 75.9
Definiteness 23 2.8 1.4 2.1 1.7 1.6 100.0
Demonstratives 12 4.6 2.8 5.6 2.8 2.6 100.0
Interrogatives 14 2.9 1.2 1.2 4.1 3.8 92.9
MassNouns 23 3.4 1.5 2.5 2.3 2.0 91.3
Modals 26 3.8 1.6 2.1 2.1 2.0 92.3
Partitives 14 4.5 1.0 2.7 1.8 1.6 85.7
Possessives 44 3.5 1.7 3.7 5.2 5.0 100.0
Pronouns 28 2.5 1.7 2.0 2.3 2.1 96.4
Quantifiers 42 3.5 1.3 2.9 2.9 2.7 88.1
Reflexives 13 3.5 1.9 1.3 1.4 1.4 100.0
Other 22 3.5 1.1 1.4 1.6 1.6 95.5

Total (‘base’) 290 3.6 1.5 2.5 2.8 2.6 92.8

Corpus (‘tur ’) 104 12.8 7.6 37.6 761.8 211.9 70.2
(generated by [incr tsdb()] at 31-jan-2005 (10:35 h))

Figure 2: End-to-end coverage and average ambiguity rates (for analysis, transfer, and generation,
respectively) on ‘base’ test set vs. ‘tur ’ development corpus. Test suite results are broken down by
linguistic phenomena, highlighting variation in input complexity and average ambiguity and, of course,
remaining problem areas. Differences between the average number of generator results and the total
number of final outputs indicate that there can be multiple paths through the LOGON pipeline resulting
in identical (looking) translations, for example where different modifier attachments are not reflected
at the surface.

for the genre. Test items in this development
corpus, dubbed ‘tur ’, are quite a bit longer
(ranging to up to 30 words, at an average
of 13) than the test suite examples, exem-
plifying phenomena like instructional imper-
atives, abundant directionals and locatives,
complex coordination structures of all major
syntactic categories, and of course rich com-
binations of these. As of late, the project
is shifting emphasis to more corpus data,
preparing to now scale up demonstrator de-
velopment to target a 50,000-word corpus of
running tourism text (see Section 4 below).

To provide at least some indication of
how profiling for MT works for LOGON

in practice, Figure 2 presents a summary
view of translation coverage (on the ‘base’
and ‘tur ’ sets) from the [incr tsdb()] pro-
file database. Obviously, the core parame-
ters of the two types of data sets (and LO-

GON system performance) show significant
differences and often directly point to re-
maining development opportunities. In ad-
dition to such aggregated summary views on
a profile, the [incr tsdb()] environment sup-
ports item-level analysis and off-line well-
formedness checking of individual results,

for example the identification of syntacti-
cally fragmented analyses (a deliberate ro-
bustness measure) or semantically anoma-
lous MRSs (with respect to variable binding,
internal cycles, or scope relations, say). We
are in the process of combining this facil-
ity with an explicit semantic interface spec-
ification for each component (the resources
labeled ‘SEM-I’ in Figure 1), in order to fur-
ther sharpen unit testing: for each grammar,
its SEM-I essentially enumerates the inven-
tory of valid semantic predicates and ap-
propriate roles and value constraints. Such
explicit specification of inter-component in-
terfaces will enable automated flagging of
non-compliant intermediate results and fur-
ther disentangle developer dependencies for
‘downstream’ components. Another exam-
ple of the use of profiling in LOGON is
given in Figure 3, where the incremental
evolution of coverage in the transfer com-
ponent is plotted over an integration cycle
of five months. Despite occasional regres-
sion between snapshots, tracking the perfor-
mance of a single module over time guaran-
tees a positive long-term development tra-
jectory. At the same time, of course, it is
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Figure 3: Evolution of grammatical coverage in the transfer component (when viewed in isolation)
over a five-month development cycle. The two near vertical clusters of data points reflect intense
development periods targeting this specific test corpus and daily system snapshots against it.

re-assuring to confirm that two focused en-
gineering weeks against the ‘tur ’ corpus re-
sulted in dramatic coverage gains (although
more work remains).

4 Reflections, Preliminary

Conclusions, and Outlook

The quality assurance measures we propose
might sound almost obvious to some (in-
dustrial developers, say) and unnecessarily
complex to others (some of our colleagues in
academia, possibly). This may be a neces-
sary dilemma in methodological arguments.
The LOGON glass box set-up, for example, is
in several respects similar to the MT system
developed by S̊agvall Hein, Forsbom, Wei-
jnitz, Gustavii, & Tiedemann (2003), even
though the range of diagnostic parameters
and analysis techniques in LOGON is prob-
ably broader. More importantly, however,
we believe that scalable, systematic regres-
sion testing requires both (a) structured, an-
notated input data (rather than flat text
files) and (b) a database-like organization of
test results (instead of a collection of system
logs). Both seem necessary to accomplish a
high degree of automation of diagnostics, in-
depth precision, and user-level flexibility—
all prerequisites in our view to establishing
frequent regression testing as a pivotal point
in development.

The by far larger Verbmobil project on
spoken dialogue MT (Wahlster, 2000) had

designated teams working on integration
and testing. However, unlike in LOGON,
few partners were able to both perform unit
testing on their own modules and assess its
performance when embedded within the full
demonstrator. At least some Verbmobil par-
ticipants in retrospect seem to judge a ‘one-
way’ delivery paradigm (hand-over of mod-
ules to integrators) as a limiting factor to
component-level development. Accordingly,
LOGON strives to always make the full sys-
tem easily accessible to all partners and,
in fact, requires component maintainers to
complete unit testing and end-to-end regres-
sion testing of new revisions prior to submis-
sion of each component.

At this stage, regression testing always
runs the LOGON pipeline in exhaustive fan-
out mode, although we expect to (have to)
move to cascaded n-best mode—based on
probability distributions over intermediate
results—as ambiguity further increases (a
production version could then be assembled
by simply setting the final n to 1). For evalu-
ation purposes, fan-out mode is not only at-
tractive because in some cases early pruning
would eliminate a globally best output, but
also to make sure that all branches of pro-
cessing (and some seemingly dis-preferred
hypotheses) receive first-class consideration.
As the project moves into the next level
of empiricist, data-driven engineering, viz.
against a bi-lingual 50,000-word text cor-
pus, we expect that the profiling methodol-
ogy and tools will enable the consortium to



maintain the same high standards of control-
ling system outputs and diagnostic accuracy
that we have found essential to our parallel
and distributed development efforts already.
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